
17. AALE-Konferenz
Ort, Datum 09.03.-11.03.2022

Open Access. © 20xx V. Chavez, F. Cruz, M. Ruchay, J. Wollert
This work is licensed under the Creative Commons Attribution 4.0 License. +

Rapid prototyping framework for automation
applications based on IO-Link
V. Chavez1, F. Cruz2, M. Ruchay3, J. Wollert4

Abstract

The development of protype applications with sensors and actuators in the automation industry re-
quires tools that are independent of manufacturer, and are flexible enough to be modified or extended
for any specific requirements. Currently, developing prototypes with industrial sensors and actuators
is not straightforward. First of all, the exchange of information depends on the industrial protocol that
these devices have. Second, a specific configuration and installation is done based on the hardware
that is used, such as automation controllers or industrial gateways. This means that the development
for a specific industrial protocol, highly depends on the hardware and the software that vendors pro-
vide. In this work we propose a rapid-prototyping framework based on Arduino to solve this problem.
For this project we have focused to work with the IO-Link protocol. The framework consists of an
Arduino shield that acts as the physical layer, and a software that implements the IO-Link Master pro-
tocol. The main advantage of such framework is that an application with industrial devices can be
rapid-prototyped with ease as its vendor independent, open-source and can be ported easily to other
Arduino compatible boards. In comparison, a typical approach requires proprietary hardware, is not
easy to port to another system and is closed-source.

Keywords

Rapid-prototyping, Arduino, IO-Link, Industrial Communication

1 Introduction

Integrating industrial devices such as sensors and actuators in rapid-prototyping applications or
proof-of-concepts is not always straight forward. These devices transmit data typically through an in-
dustrial communication protocol. To access the information of these protocols an automation control-
ler or industrial gateway is normally required. Their use involves a specific hardware and software
that is dependent on the vendor. For rapid-prototyping scenarios, this means that developing an ap-
plication depends on the hardware that is used and cannot be replicated easily with another vendor.
In addition, the hardware and software provided by these vendors is not always modifiable, and add-
ing extra features is not possible.
In this paper, we present the development of a framework that intends to address these issues and
provide a rapid-prototyping framework with industrial sensors and actuators. The scope of this work
is oriented towards the development of rapid-prototyping applications with the IO-Link industrial
communication protocol. The frame of reference for this work is the Arduino platform which is ori-
ented to rapid-prototyping and is vendor neutral. In the following sections the motivation for this work

1 Fachhochschule Aachen
2 Fachhochschule Aachen
3 Fachhochschule Aachen
4 Fachhochschule Aachen

2 Rapid prototyping framework for automation applications based on IO-Link

Open Access. © 20xx V. Chavez, F. Cruz, M. Ruchay, J. Wollert
This work is licensed under the Creative Commons Attribution 4.0 License. +

is explained, an Introduction to IO-Link is given and the design of the framework is explained. At the
end our preliminary results are shown and a conclusion and future work is provided.

2 Motivation

Our interest in developing a rapid-prototyping framework for sensors and actuators based on IO-Link
is two-fold. Firstly, at our university we develop low-cost mechatronic projects with students and we
have noticed the lack of open-source tools to integrate industrial sensors and actuators easily without
being dependent of a specific vendor solution. Secondly, we have hands-on experience with IO-Link
from the development of an Arduino based IO-Link device framework [1], and are interested in ex-
panding it to have a complete industrial prototyping ecosystem that is accessible, hackable and easy
to use for students. In addition, we intend to work on this framework and adapt it for use with the
ethernet 10BASE-T1L PHY layer as part of our research from [2].

3 Related work

As far as we know, there are two rapid-prototyping environments for industrial IO-Link devices avail-
able. There is a commercial evaluation board from STMicroelectronics, compatible with the STM32
nucleo microcontroller and the Arduino UNO. It consists of an IO-Link master transceiver board that
includes a software demo evaluation, and a proprietary graphical user interface that can load an IO-
Link description file and view the process data of an IO-Link device. This framework is suitable to
learn in general how IO-Link. However, as it consists of a closed-source software, modifications and
adaptions are not possible.

The second alternative is an open-source IO-Link Master shield/hat [3]. This project consists of an elec-
tronics board with an IO-Link Master transceiver compatible with Arduino and Raspberry Pi. It also
includes a software that explores some of the features of the IO-Link protocol. This project seems
promising as it’s the only open-source project alternative for IO-Link but at the moment lacks IO-Link
features such as parametrization of devices (on-request data) and diagnostics information (IO-Link
events). From these two options we see that there still exists a gap in a framework that incorporates
of all the main features of IO-Link, is open-source and can easily be adapted to any other development
environment.

4 What is IO-Link?

IO-Link is a standardized single-drop digital communication interface technology (SDCI) for sensors
and actuators, part of the IEC61131-9 specification [4]. IO-Link consists of at least two components, one
IO-Link master and one or more IO-Link devices. The IO-Link master initiates the communication and
configuration of any IO-Link device that is connected to it. In the other hand, an IO-Link device is
considered the source of information about a process (e.g., sensors) or the end device to control a pro-
cess (e.g., motor). The physical IO-Link interface consists of a three-wire signal consisting of two wires
(L+, L-) for power supply and one wire (C/Q) for communication. The C/Q line transports information
as a serial protocol that can communicate up to a speed of 230.4 kbit/s.

Rapid prototyping framework for automation applications based on IO-Link 3

Open Access. © 20xx V. Chavez, F. Cruz, M. Ruchay, J. Wollert
This work is licensed under the Creative Commons Attribution 4.0 License. +

Figure 1 Typical IO-Link topology [5]

The main advantage of IO-Link is that it allows to connect sensors and actuators as plug-and-play de-
vices. The exchange and management of information is done automatically by the IO-Link master and
can be configured to download a configuration to the IO-Link device in case of replacement. The in-
formation and configuration of an IO-Link master can be accessed through its so-called Standardized
Master Interface (SMI). This interface consists of a set of services that allow to control the IO-Link
master, get information from the connected devices and configure it. Typically, this interface is inter-
nally built to connect over a fieldbus network or a proprietary protocol as part of a Programmable
Logic Controller (PLC) module.

5 Framework

One of the most well-known prototyping frameworks for electronics and do-it-yourself projects is the
Arduino open-source electronic prototyping platform [6]. Due to its compatibility with different mi-
crocontrollers, easy integration to different ecosystems and its constant development, we have chosen
to develop this project based on this platform. In the following subsections, we present a view on the
design process for the framework and the design requirements based on the IO-Link specification ver-
sion 1.1.3 [7].

5.1 Hardware Requirements

The first step of the design process consists of identifying the hardware components that are needed
to develop an IO-Link Master. One of the first, and most important components is the IO-Link Master
transceiver. This transceiver acts as a bridge between the IO-Link physical layer and a microcontroller
that implements the communication stack. For this prototype we selected an LTC2874 transceiver from
Analog Devices. This transceiver supports communication up to four IO-Link devices, automatic gen-
eration of the wakeup signal, and configuration via a SPI interface [8].

Another part required according to the specification, is the use of 2048 bytes of non-volatile memory
per IO-Link device for the so-called Data Storage (DS). For this part, we selected a 25AA128T EEPROM
memory from Microchip with 16 KB of storage. The next part that is needed for the design is the mi-
crocontroller that will drive the communication logic and interact with the other components. Before
discussing the selection of the microcontroller, we will discuss the hardware requirements that it
needs to have according to the IO-Link specification.

4 Rapid prototyping framework for automation applications based on IO-Link

Open Access. © 20xx V. Chavez, F. Cruz, M. Ruchay, J. Wollert
This work is licensed under the Creative Commons Attribution 4.0 License. +

The IO-Link communication relies on the principal of a universal asynchronous receiver-transmitter
(UART). The maximum baud rate required for IO-Link communication is 230.4 Kb/s. The second hard-
ware requirement is the use of timers to measure timeouts and events. Not all of the timers, are used
at the same time and an analysis was done to verify the maximum number of timers required per IO-
Link device. The use of timers can be divided in two phases. Firstly, there is the initialization phase,
which consists of detecting whether an IO-Link device is connected or not. Secondly, there is the com-
munication phase which can be in one of the three IO-Link states known as startup, pre-operate and
operate.

For the first phase, a total of four timers were identified, according to the specification these are Tren,
Tdwu, Tdmt and Tsd. By checking their usage in a timeline, it was found that two of them run sequen-
tially (Tren, Tdwu) and the two others run in parallel (Tdwu,Tsd). To minimize the number of timers
required for this phase, it was found that Tren and Tdwu can be assigned to one timer, and Tdwu and
Tsd to another (see Figure 2).

Figure 2 Visual representation of timers in the initialization phasee

The second phase, requires three timers: TMseq, Tcyc, and TIsdu. After analysing their usage in a time-
line (see Figure 3), it was concluded that they have to be run in parallel. As both of these phases do not
run in parallel, the maximum number of hardware timers needed is three.

Figure 3 Visual representation of timers in the communication phasee

Based on the aforementioned hardware peripherals, the microcontroller could now be selected. As
our focus is to work with the Arduino framework, the microcontroller has to be compatible with one
of the available Arduino development boards. The main requirements for this board can now be dis-
cussed. The board should have four UARTs (four IO-Link devices) and three timers per IO-Link device.
To the best of our knowledge one of the most suitable boards for this is the Arduino Due. The Arduino
Due board has one UART, four USARTs, nine timers and a SPI peripheral. This board is based on the
ATSAM3x8e microcontroller from Atmel (now Microchip), with an ARM Cortex-M3 CPU, a clock fre-
quency of 84 MHz, 512 KB of flash memory, and 96 KB of SRAM.

Rapid prototyping framework for automation applications based on IO-Link 5

Open Access. © 20xx V. Chavez, F. Cruz, M. Ruchay, J. Wollert
This work is licensed under the Creative Commons Attribution 4.0 License. +

5.2 Hardware development

The framework for this project involved the development of a custom board so-called Arduino shield
that can be connected on top of the Arduino Due and provide access to the external hardware to com-
municate via IO-Link. The main goal of the shield is to have access to the IO-Link Master transceiver,
the non-volatile memory for DS and four IO-Link device ports with M12-4A female connectors. Addi-
tionally, we added an ethernet MAC-PHY interface ENC424J600 from Microchip for the future addition
of ethernet connectivity.

IO-Link requires a 24V power supply for the transceiver and the IO-Link devices. As the Arduino Due
only supports 12 volts maximum for voltage input, a 24V voltage regulator was included in the shield.
A block diagram of the components that were integrated into this IO-Link Master shield is seen in
Figure 4. The blocks colored with blue are the main hardware components of the shield, while the
greeen blocks represent the communication interfaces that the shield provides for the Arduino Due,
and the yellow blocks are the external communication interfaces. A preliminary view of the complete
PCB assembly is seen in Figure 5. In this view we can see the addition of status LEDs, the positioning
of the IO-Link Device connectors on the right side and the header for stacking the Arduino Due on the
bottom side.

Figure 4 Block diagram view of IO-Link Master shield

Figure 5D View of PCB Assembly

5.3 Software Design

The objective of the framework kept in mind compatibility with the Arduino Software Development
Kit (SDK) and flexibility to extend it to other Arduino boards in the future. In this section the software
design, its implementation and its focus for the Arduino platform are discussed. The main premise for

IO-Link Master Shield

Transceiver

EEPROM

24V
Regulator

3.3V Regulator

Ethernet
Interface

IO-Link

Ethernet

UART

SPI

6 Rapid prototyping framework for automation applications based on IO-Link

Open Access. © 20xx V. Chavez, F. Cruz, M. Ruchay, J. Wollert
This work is licensed under the Creative Commons Attribution 4.0 License. +

the software design was that the framework is intended for rapid-prototyping applications and easy
customization. For this reason, we followed a layered style architecture due to its simplicity and ease
of development. The software implementation can be divided into three parts: the communication
stack, the Hardware Abstraction Layer (HAL), and the Application Programming Interface (API).

The lowest layer in this design is the HAL. The purpose of the HAL is to access the hardware periph-
erals independent of the Arduino board that is used. The main components modelled for the HAL were
the SPI, the UART, the EEPROM, the IO-Link Master transceiver and the timers. The HAL interacts di-
rectly with the communication stack, which requests access to the peripherals for the IO-Link commu-
nication.

The second layer consists of the communication stack. In this layer the communication layers from
the IO-Link specification v1.1.3 were implemented. The hardware access is done as mentioned through
the HAL and any events from the stack or requests are interchanged with the API layer.

The last layer is the API. In this layer the user can send requests to the API which will redirect them to
the communication stack. In addition, confirmation of the requests and notifications from the com-
munication stack are processed and sent to the user. The API is based on the IO-Link SMI, which rep-
resents a standard way of accessing the services of the IO-Link Master and its IO-Link device ports.

6 Preliminary results

For the first iteration of this project, we did not include the integration of the Arduino shield due to
the current chip shortage problematic. Instead, we only tested the software and used a LTC2874 devel-
opment board for the IO-Link communication. The tests for this first prototype included verifying that
an IO-Link device could go into operate mode and exchange process data, reading its vendor name,
and notification of IO-Link events.

For these tests we used two IO-Link devices: the first one is a O5D150 distance sensor from ifm Elec-
tronic, and a KI6000 capacitive sensor from the same company. The verification process consisted of
using the API to send requests to set an IO-Link port in IO-Link mode and read its process data, serial
number and produce an IO-Link event. The results of these operations were logged and sent through
the serial monitor port of the Arduino IDE (see Figure 7)

HAL

Communication
Stack

API

Figure 6 Overview of Software Architecture

Rapid prototyping framework for automation applications based on IO-Link 7

Open Access. © 20xx V. Chavez, F. Cruz, M. Ruchay, J. Wollert
This work is licensed under the Creative Commons Attribution 4.0 License. +

Figure 7 Tests with an IO-Link Device

Besides testing these features we also measured the average latency of the processing time of the com-
munication stack and the reception of process data. For the average processing time with one port
active it was found that in average it took 40 microseconds the execution of the stack. The reception
of process data through the API starting from the reception of the IO-Link device data through the
UART took about 130 microseconds. The asynchronous read request from the API to the communica-
tion stack was in average 100 microseconds.

7 Conclusions

The preliminary results of this work allowed us to show the feasibility of a rapid-prototyping frame-
work for applications with industrial sensors and actuators. In particular, we decided to use as a ref-
erence frame the Arduino platform for our development. The advantage of this platform is that its
open-source and there is support for wide variety of components that can be added to the Arduino
framework such as data logging, wireless connectivity, and embedded sensors. In comparison with a
traditional approach, were a PLC is required to get information from a sensor, the Arduino platform
is neutral and compatible with development boards. In addition, configuring a project for a PLC, set-
ting up the communication and extracting the information for a simple application is more cumber-
some than just using an Arduino and loading a library. The main advantage here is that this approach
can be deployed faster to test a prototype and integrate it with other components due to the flexibility
that Arduino offers and its constant development.

It has to be noted that the framework is not optimized for performance and rather uses a more sim-
plistic design for ease of use and portability with other Arduino development boards. The main reason
for this is that the purpose of the work is for rapid prototyping and not for deployment as a commercial
product where optimization and performance matter, such as by using an event-driven architecture
and a real time operating system. The current implementation is not finished and will be further im-
proved to test that it works with more than one IO-Link device and to fix any bugs in the software. In
addition, tests with the IO-Link Arduino shield will be made.

8 References

[1] V. Chavez and J. Wollert, “Arduino based Framework for Rapid Application Development of a
Generic IO-Link interface,” pp. 21–33, 2020.

[2] V. Chavez, P. Saurabh, and J. Wollert, “10BASE-T1L based connection for field devices in Cyber-

8 Rapid prototyping framework for automation applications based on IO-Link

Open Access. © 20xx V. Chavez, F. Cruz, M. Ruchay, J. Wollert
This work is licensed under the Creative Commons Attribution 4.0 License. +

Physical Systems: A Proof of Concept,” in Embeddd World Conference, 2021.
[3] T. Gammeter, J. Lehmann, P. Frei, and M. Gafner, “openiolink/io-link-master-shield-hat-sw

Software for the IO-Link Master Shield/Hat for Arduino and Raspberry Pi.” [Online]. Available:
https://github.com/openiolink/io-link-master-shield-hat-sw. [Accessed: 01-Oct-2021].

[4] International Electrotechnical Commission, “IEC 61131-9:2013.” [Online]. Available:
https://webstore.iec.ch/publication/4558. [Accessed: 01-Jan-2021].

[5] IO-Link Community, “IO-Link System Description,” 2018.
[6] “Arduino.” [Online]. Available: https://www.arduino.cc/. [Accessed: 01-Oct-2021].
[7] IO-Link Community, “IO-Link Interface and System v1.1.3,” 2019.
[8] Analog Devices, “LTC2874 Datasheeet and Product Info.” [Online]. Available:

https://www.analog.com/en/products/ltc2874.html. [Accessed: 01-Oct-2021].

