19. AALE-Konferenz
Luxemburg, 08.-10. Mérz 2023

Low-Cost Automation: An Open Source
Laser-Triangulation Sensor based on ROS2

Moritz Schauer?, Tristan Elias Wolfram?!, Jakob Czekansky!, Diethelm Bienhaus!

Abstract

This paper presents the development of an open-source laser triangulation sensor system for automa-
tion tasks. The prototype system is based on the Robot Operating System 2 (ROS2) and aims to provide a
low-cost alternative to commercially available sensors while achieving comparable accuracy. The pro-
posed system aims to facilitate the adoption of automation in smaller applications and make it more
accessible, particularly in academic contexts. With the system, we achieve an average depth estimation
deviation of approximately 200 pm.

Keywords

Sensors, Low-Cost Automation, ROS 2, Robotics, 3D Perception

1 Introduction

In a more and more automated industrial manufacturing environment, robots are playing an ever-
increasing role. Especially for small and medium-sized companies, robots are becoming increasingly
attractive, primarily because the hardware is becoming more affordable. However, automation does
not stop with acquiring a robot and its programming. Additional sensors are needed for a fully au-
tonomous system that can react to changing surroundings, especially in rapidly changing production
environments. Imaging sensors play a significant role here, regardless of whether the data is 2D or 3D.
Nevertheless, 3D sensors can provide more information with additional depth data, through which
a better statement about the environment can be made. For constructing such 3D sensors, one has
the choice of different techniques. The most common are Time-of-Flight (ToF) [1], active or passive
stereo [2], and structured light [3]. Thereby, laser triangulation is best associated with the latter. Laser
triangulation is a precise, non-contact measurement technique that is used in a variety of industrial
applications, such as inspection and quality control [4], robotic guidance [5], and 3D scanning [6]. Even
though these sensors are now well established in the industry, the commercially available systems are
very cost-intensive. This represents a financial hurdle for smaller applications, especially in an aca-
demic context. For this reason, in this paper, we propose an open-source laser triangulation sensor
system based on the Robot Operating System 2 (ROS2). In the design of the prototype system, we put
more weight on the low-cost concept to keep the system’s overall cost low. Moreover, in addition to the
low-cost approach, we ensured that the sensor has comparable accuracy to sensors used in the indus-
try. Since the sensor is open hardware, it can easily be adapted to changing requirements. For example,
shorter working distances can be realized. This can be particularly interesting if both the depth data
and the texture of surfaces are to be recorded with a high resolution and accuracy, for example, in
dendrochronology [7].

1 Institut fiir Technik und Informatik, Technische Hochschule Mittelhessen, Giefsen

Open Access. © 2023 Moritz Schauer, Tristan Elias Wolfram, Jakob Czekansky, Diethelm Bienhaus
This work is licensed under the Creative Commons Attribution 4.0 License. + [() N

Low-Cost Automation: An Open Source Laser-Triangulation Sensor based on ROS2 2

2 Concept

The principle of laser triangulation is based an the projection of a 3D point, represented as Py, onto
the image plane using a perspective transformation. This projection creates a corresponding pixel,
represented as p;. The perspective transformation used for this projection is known as the pinhole
camera model. The pinhole camera model provides a distortion-free projective transformation, as
shown in equation (I).

The camera intrinsic matrix is represented as A, while R and T are the rotation and translation that
describe the transformation from the world to the camera coordinate system (or camera frame). The
scaling factor s is an arbitrary element of the projective transformation and is not included in the
camera model. However; it can be calculated during extrinsic calibration of the camera.

Instrinsic Calibration

But first the intrinsic parameters of the camera have to be determined. These are the focal lengths
f» and f,, the principal point (c,,¢,), and the radial and tangential distortion coefficients. For the
calibration process a calibration target is needed. Normally, a simple chessboard pattern would suffice
here. However, for the later extrinsic calibration we need two patterns orthogonal to each other. Since
the two chessboard patterns would be difficult or impossible to distinguish, we used so-called ChArUco
borads for the calibration process. These are chessboard patterns which have AruCo markers in the
white squares. By using different markers for the two chessboards, they can be precisely distinguished.
To estimate the intrinsic parameters we use the built-in methods of OpenCV, which rely an Zhang’s
method [8].

Laser Line Extraction

Single points on the laser line must be detected for the extrinsic calibration and the calculation of the
depth data after the calibration. In order to obtain accurate subpixel points, a few pre-processing steps
are necessary. In the first step, a difference image of two images is created. Therefore, we subtract an
image where the laser is off from one where it is switched on. The difference image is filtered in the
next step with a Gaussian filter of size 5. The filtering reduces noise in the image. Then the laser line
is searched line by line in the image. First, a global threshold is calculated using the Otsu thresholding
method [9]. With this threshold value, we check line by line if there is a pixel above this value. If
no pixel is detected, the line is not considered further. We determine the center of the laser line with
subpixel accuracy in each line where at least one pixel is considered valid. First, the pixel with the
highest intensity I,,,. is determined a position =. Then a quadratic function is laid through the pixel
and its two neighbors using (2).

x? T 1 a I,
(z+1)? (@+1) 1| |b|=]|ILnu (2)
(x—1)% (z—1) 1 c I,

Since we are not searching globally in the line but only looking for a deviation of at most one pixel
around I,,.,, we can set z = 0 and make the following simplification:

0 0 1\ (a I,
1 1 1||bo] =L (3)
1 -1 1) \e Iy 1

Open Access. © 2023 Moritz Schauer, Tristan Elias Wolfram, Jakob Czekansky, Diethelm Bienhaus
This work is licensed under the Creative Commons Attribution 4.0 License. + [() N

3 Low-Cost Automation: An Open Source Laser-Triangulation Sensor based on ROS2

Now we can solve the equation system and get the coefficients of the quadratic function. To find the
maximum and, thus, the center of the laser line, the zero of the derivative is calculated. For this applies:

20 -x+b=0
b 4)
JU_2a

By substituting the determined values from (3) we get a number in the interval [-1, 1], which indicates
the deviation of x around the pixel 7,,,,..

Extrinsic Calibration

The goal of the extrinsic calibration is to calculate the laser plane equation (LPE). During point cloud
generation, the LPE can convert the calculated subpixels into threedimensional points. To calibrate
the LPE, we need a calibration pattern. For this, we use two ChArUco-boards arranged at a right an-
gle to each other. With this configuration, we get two laser lines that have a unique orientation and
translation to each other. One can see the setup of the calibration boards with the laser line in fig.

The calibration of the LPE can then be divided into the following steps: (a) Detection of both ChArUco-
boards, (b) calculation of the orientation of both boards, (c) definition of two ROIs for the laser line,
(d) extraction of both laser lines, (e) transformation of both laser lines into the same coordinate system,
(f) fitting of the LPE.

We calculate an ROI based on the ArUco-marker detection to extract the two separate laser lines. This
gives us a rectangle for each board, which we can then use to trim the image. We can use the pinhole
camera equation to transform the laser line points into a shared coordinate system (1). During the
calibration process, we can now calculate the missing scaling factor s. For this we first rearange (1) as
following:

Py = s[RI [A] " pr— (Rt ®)
ﬁ,/ Hg_/
b

In the next step, we lay our world coordinate system in the origin of the ChArUco-boards. Since we can
assume that all points of the respective laser line are located in the XY plane of the respective ChArUco
board, we can set Py, = 01in . From this, follows:

Py, =sa,—b,

0=s A, — bz (6)

b

§=—

a
Now we can extract the three-dimensional coordinates of all points of both laser lines. The second to
last step transforms all points into a standard coordinate system. Finally, a plane is fitted through all
given laser points using the SVD method. The resulting LPE is later used to calculate the depth data

during each scan.

3 Architecture and Design

In this section, we will briefly elaborate on different aspects of our architecture and on design deci-
sions. We will start by outlining the hardware setup in the first subsection, followed by a detailed
description of the software architecture. We will conclude our description by pointing out our modu-
larity approach and the usage of the developed ROS nodes.

3.1 Hardware Setup

We built a prototype for a proof of concept of our architecture. The initial focus was on the availability
of parts and simple control. The low-cost approach was already partially pursued but can also be

Open Access. © 2023 Moritz Schauer, Tristan Elias Wolfram, Jakob Czekansky, Diethelm Bienhaus
This work is licensed under the Creative Commons Attribution 4.0 License. + [()

Low-Cost Automation: An Open Source Laser-Triangulation Sensor based on ROS2 4

Camera

USB to PC

aaaaaa
nnnnnnnnn

Figure 1: Prototype setup consisting of a line laser and an Figure 2: Wiring diagram of the prototype.
industrial camera.

expanded. The laser used was a modull| from Picotronic. This is a 650 nm laser module with 5 mW
power and an adjustable focus. It can be equipt with Diffractive Optical Elements (DOE) to generate
different lighting patterns. For our purpose we add a solid line DOE wich produces a 1 mm thick
line and has a FOV of 45.5°. To acquire the images, we used an industrial cameraE] from Basler. The
advantage of the industrial camera for our prototype is that it has I/O ports. So no extra I/O controller
must be connected to the computer to control the laser.

The basis of the prototype is an aluminum profile, which has a grid of /4" - 20 UNC threads. The distance
between the holes is 12 mm. Both the camera and the laser are attached to this profile. The laser is
oriented vertically downwards so that the projected line is orthogonal to the profile. The camera is
oriented at an angle of 60° to the laser. The distance between the laser and the camera is 140 mm. One
can see the mounted prototype in fig. {1l As we use a higher working distance than typical industrial
sensors we did not incorporate optics according to the Scheimpflug rule like in Chen et al. [10]

Since the sensor is designed to record colorized depth data, it must be possible to switch the laser on
and off. For this, we use one of the optoisolated outputs of the camera. This camera output is then
connected to a MOSFET, which controls the laser’s power supply. The wiring can be seen in fig.

3.2 Software Implementation

We implemented the software using the Python API of ROS 2. Thereby, the software implementation for
the scanner consits of two main nodes that provide the necessary functionality through their services.
In order to use the scanner, a client node must be employed to call theses services. The concept of
nodes and their respective services can be observed in fig.

The ROS node camera_node represents the physical camera and is responsible for obtaining the im-
ages. Therefore the node offers different services that can trigger different types of image acquisition.
In general, a distinction can be made between calibration and regular scanning operation. During the
calibration process, the camera can send multiple images of the chessboard pattern for intrinsic cali-
bration through the cam_calib_imgs topic. The second topic the camera_node publishes, is img_pair.
Here the image pair consists of one image where the laser is switched on and one where it is off. As
the camera is directly connected to the laser (as shown in fig. [2), it can toggle it by itself during image
acquisition. Additionally, a variable is set to determine if the images are being used for calibration or
the generation of point clouds.

The second ROS node is the surface_scanner_node. It is responsible for generating the point clouds
for a given image pair. But in order to produce a point cloud, the scanner needs to be calibrated. Here,
it is responsible for both intrinsic and extrinsic calibration. It also stores the calibration data like the

1 LD650-55(12x32)45-F300
2 a2A1920 - 160ucPRO

Open Access. © 2023 Moritz Schauer, Tristan Elias Wolfram, Jakob Czekansky, Diethelm Bienhaus
This work is licensed under the Creative Commons Attribution 4.0 License. + [() N

5 Low-Cost Automation: An Open Source Laser-Triangulation Sensor based on ROS2

or S Em Em Em Em Em Em Em B Em G Em Em R Em B Em Em S Gm Em M G Gm Em G R Em A Em E Em o e

s ~ surface_scanner_pkg ~

S
SERVICE
Name: send_img_pair_calib

/ Interface: std_srvs/Trigger \
- | Node | X

\

SERVICE Camera
Name: send_img_pair_surface

Interface: std_srvs/Trigger |

M.

O Omessace

SERVICE Name: /img_pair

Name: send_cam_calib_imgs Interface: interfaces/msg/imagePair
Interface: std_srvs/Trigger

Node
. messace ()
Client Name: /cam_calib_imgs
O Interface: interfaces/msg/CameraCalibrationlmgs
SERVICE

Name: calibrate_scanner

Interface: std_srvs/Trigger

Node
O Surface-
SERVICE

Name: calibrate_with_import Scanner
Interface: std_srvs/Trigger J

')

L] GRS R

)

O
A MESSAGE r
s Name: /surface_line 7
~ Interface: sensor_msgs/PointCloud2 P

Figure 3: FMC block diagram showing all nodes, messages, and services of the ROS implementation.

laser plane equation, the intrinsic camera matrix, and the distortion coefficients. For the calibration
process, the surface_scanner_node provides two services. The first service checks that the scanner
has received all calibration images and will perform the calibration as a whole. For the second ser-
vice, we implemented an option to calibrate the scanner by importing the camera data from intrinsic
calibration. Since we use a camera with a fixed focus, the intrinsic camera parameters do not change.
Therefore the intrinsic calibration has to be done only once. However, an extrinsic calibration must
always occur when the scanner is re-initialized. The reason is that the prototype is not that rigid, and
even a slight deviation in the geometrical relations would invalidate the extrinsic calibration. Finally,
after the calibration is done, the scanner can be used to obtain depth data out of image pairs send by the
camera. The workflow for that is described in fig.|5| A client node calls the service of the camera node
responsible for obtaining an image pair for surface reconstruction. If an image pair is received and the
scanner has been calibrated, a point cloud is automatically generated and published through the sur-
face_line topic. The point clouds generated by the scanner can be received by any node capable of
processing the PointCloud2 message type, such as rvizﬂ This generated point cloud is a cross-section
of the scanned scene at the position of the laser line. The sensor or the scene must be moved to obtain
a full surface reconstruction. The point clouds can then be merged in the correct spacing.

N Node Node Node
Workflow: Client Camera Scanner
scan

service call —]
1 - publish img_pair - »|

SERVICE
Name: send_img_pair_surface | f |\

'
move sensor Interface: std_srvs/Trigger \

and repeat |<&— service response — generate pointcloud
1
«-------- publish pointcloud - = = = = = = = | € =====~ d
Figure 4: ChArUco-Board used during Figure 5: Workflow of the scanning process.

extrinsic calibration with the laser line
projected on it.

3 https://github.com/ros2/rviz

Open Access. © 2023 Moritz Schauer, Tristan Elias Wolfram, Jakob Czekansky, Diethelm Bienhaus
This work is licensed under the Creative Commons Attribution 4.0 License. +

Low-Cost Automation: An Open Source Laser-Triangulation Sensor based on ROS2 6

0.0 Je e e B B i B [eyt ety e

Mean Deviation: -0.267 mm 0.2 Mean Deviation: -0.138 mm
o1 0.0 \

3 E

C - C

5§02 §02 |V v \/ VARV AN V

© ©

P >

] 9]

[a) (=)

A \/ h

-0.4 _0.6

0 1 2 3 4 5 6 7 8 9 012 3456 7 8 910111213141516171819
Stair Step Stair Step

Figure 6: Plot of absolute deviation measured at a step Figure 7: Plot of absolute deviation measured at a step
size of 10 mm. The black line shows the average size of 5 mm. The black line shows the average
deviation. deviation.

4 Evaluation

In order to evaluate the sensor prototype, a test object was created. This test object is a 10 cm high
staircase with steps spaced at 10 mm and 5 mm intervals. We manufactured the staircase using a high-
precision 3D printer. The test object was placed under the sensor such that the generated laser line was
centered on one of the rows of steps, and a working distance of 40 cm was used. An exemplary point
cloud can be seen in figure [8| The scanner’s accuracy was determined by calculating the distances
between the individual steps. The first step was to segment the point cloud, creating different point
clouds for the floor and the individual steps. Subsequently, a straight line was fitted into the point
cloud of the floor with the help of singular value decomposition (SVD). We used the orientation of the
floor line for the whole point cloud. Next, we need to calculate the lines for the individual stair steps.
Therefore, we first calculated the mean value for each step. Afterward, lines with the same alignment
as the floor line were laid through the mean values. In the last step, the distances of the individual
lines to each other were calculated. In order to obtain better comparability, the total measurement was
repeated six times for both series of steps. The results of the measurements are shown in figures[6|and
respectively. The dark blue line represents the mean value of the individual measurement points.
The blue shaded area is the deviation around the mean value. In addition, the zero line is shown in
red, and the total mean value is in black. In the measurement of the stairs with a step interval of 10
mm, the average step height deviation was —267 pm. The average deviation for the staircase with a
5 mm interval was even lower, at —138 pm. The maximum and minimum absolute deviation for the

e

R

Figure 8: A plot of the generated point Figure 9: A scan of the Figure 10: Scan of a tree slice by using
cloud of the staircase with a step interval printed staircase with the alinear table.
of 10 mm. The fitted lines are also plotted. Intel RealSense d415. The

steps with the 5 mm

interval (on the right side)

are not noticeable.

Open Access. © 2023 Moritz Schauer, Tristan Elias Wolfram, Jakob Czekansky, Diethelm Bienhaus
This work is licensed under the Creative Commons Attribution 4.0 License. +

7 Low-Cost Automation: An Open Source Laser-Triangulation Sensor based on ROS2

stairs with a 10 mm interval was 483 pm and 71 um, respectively. Likewise, for the stairs with a 5 mm
interval, the maximum and minimum absolute deviation were 1006 ym mm and 13 pm, respectively.

In addition to the stair steps, we measured a line on a flat surface. Here we calculated the fitted line’s
Root Mean Squared (RMS) error. We repeated this measurement three times at different locations to
suppress outliers in the measurements. Here the averaged RMS error is 102 pm.

Additionally, we repeated the staircase measurement with a RealSense d415 from Intel. Here, the steps
of the stairs with 5 mm intervals were net detectable at an operating range of 40 cm. The larger steps
were detectable. Here the mean deviation was 149 pm.

Besides the metrological measurements, we did a full-colored scan of a wooden slice. Therefore, we
mounted the slice on a linear table. The table was then moved in 1 mm intervals under the scanner.
Afterwards, the resulting scan lines were stitched to form one coherent point cloud. The results can be

seen in fig.

5 Conclusion and Future Work

We have shown how to implement a laser triangulation sensor setup with ROS2. Besides implementing
the prototype, we also tested the sensor’s accuracy by performing different measurements. Here we
reached a mean deviation in the depth estimation between —267 ym and —138 um. We showed that
these values are comparable to other 3D imaging systems like the Intel RealSense d415. We plan to
increase the accuracy further by using more prices and robust calibration methods. In doing so, we
will mainly focus on more accurate calibration targets.

Besides that, we plan to extend the prototype to a plug-and-play sensor. In this context, we want to
emphasize the low-cost and open-source approach even more. Therefore, the sensor will be based on
a single-board computer such as the Raspberry Pi. We want to provide a custom embedded operating
system for the sensor to minimize the configuration. In addition, the industrial camera will be replaced
by a cheaper board camera. Optionally, the camera could be adapted with appropriate optics to the
Scheimpflug rule so that shorter working distances are possible with maintained accuracy. Further-
more, we plan to provide a 3d printed housing. The whole sensor is powered via Power over Ethernet
(POE), a common standard for imaging sensors.

6 Acknowledgment

The writing of this work was enabled in part from within the context of the project “Development of
a measurement methodology to enable a quick determination of the of wood species and origin on
the basis of tree ring and color analysis”. It is funded by the Federal Ministry for Economic Affairs
and Climate Action (BMWi) as part of the “Central Innovation Program for small and medium-sized
enterprises (SMEs)” under the funding code ZF4773401GR9.

7 Literature

[1] A. Kolb, E. Barth, R. Koch, and R. Larsen, “Time-of-Flight Sensors in Computer Graphics,” in Eurographics,
Munich, 2009.

[2] L. Keselman, J. I. Woodfill, A. Grunnet-Jepsen, and A. Bhowmik, “Intel(R) RealSense(TM) Stereoscopic Depth
Cameras,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Hon-
olulu, HI, USA: IEEE, Jul. 2017, pp. 1267-1276.

[3] S.Zhang, “High-speed 3D shape measurement with structured light methods: A review,” Optics and Lasers
in Engineering, vol. 106, pp. 119-131, Jul. 2018.

[4] V. I. Moreno-Oliva, E. Roman-Herndndez, E. Torres-Moreno, J. R. Dorrego-Portela, M. Avendafio-Alejo,
M. Campos-Garcia, and S. Sdnchez-Sanchez, “Measurement of quality test of aerodynamic profiles in wind
turbine blades using laser triangulation technique,” Energy Science & Engineering, vol. 7, no. 5, pp. 2180-2192,
2019.

Open Access. © 2023 Moritz Schauer, Tristan Elias Wolfram, Jakob Czekansky, Diethelm Bienhaus
This work is licensed under the Creative Commons Attribution 4.0 License. + [() N

Low-Cost Automation: An Open Source Laser-Triangulation Sensor based on ROS2 8

[5]1 J.-D.Sun, G.-Z. Cao, S.-D. Huang, K. Chen, and J.-]. Yang, “Welding seam detection and feature point extraction
for robotic arc welding using laser-vision,” in 2016 13th International Conference on Ubiquitous Robots and
Ambient Intelligence (URAI), Aug. 2016, pp. 644-647.

[6] E.W.Y. So, M. Munaro, S. Michieletto, M. Antonello, and E. Menegatti, “Real-Time 3D Model Reconstruc-
tion with a Dual-Laser Triangulation System for Assembly Line Completeness Inspection,” in Intelligent Au-
tonomous Systems 12, ser. Advances in Intelligent Systems and Computing, S. Lee, H. Cho, K.-J. Yoon, and
J. Lee, Eds. Berlin, Heidelberg: Springer, 2013, pp. 707-716.

[71 M. Schauer, J. Czekansky, M. Kreutzer, and D. Bienhaus, “Robot-based image acquisition for dendrochrono-
logical analysis of curved wooden surfaces,” in ISR Europe 2022; 54th International Symposium on Robotics,
Jun. 2022, pp. 1-6.

[8] Z.Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 22, no. 11, pp. 1330-1334, Nov. 2000.

[9]1 N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 9, no. 1, pp. 62-66, Jan. 1979.

[10] R.Chen,Y.Li, Y. Li, G. Xue, and X. Li, “Laser triangulation measurement system with Scheimpflug calibration
based on the Monte Carlo optimization strategy,” Optics Express, vol. 30, no. 14, pp. 25 290-25 307, Jul. 2022.

Open Access. © 2023 Moritz Schauer, Tristan Elias Wolfram, Jakob Czekansky, Diethelm Bienhaus
This work is licensed under the Creative Commons Attribution 4.0 License. + [()

	Introduction
	Concept
	Architecture and Design
	Hardware Setup
	Software Implementation

	Evaluation
	Conclusion and Future Work
	Acknowledgment
	Literature

